Ghrelin has novel vascular actions that mimic PI 3-kinase-dependent actions of insulin to stimulate production of NO from endothelial cells.

نویسندگان

  • Micaela Iantorno
  • Hui Chen
  • Jeong-a Kim
  • Manfredi Tesauro
  • Davide Lauro
  • Carmine Cardillo
  • Michael J Quon
چکیده

Ghrelin is an orexigenic peptide hormone secreted by the stomach. In patients with metabolic syndrome and low ghrelin levels, intra-arterial ghrelin administration acutely improves their endothelial dysfunction. Therefore, we hypothesized that ghrelin activates endothelial nitric oxide synthase (eNOS) in vascular endothelium, resulting in increased production of nitric oxide (NO) using signaling pathways shared in common with the insulin receptor. Similar to insulin, ghrelin acutely stimulated increased production of NO in bovine aortic endothelial cells (BAEC) in primary culture (assessed using NO-specific fluorescent dye 4,5-diaminofluorescein) in a time- and dose-dependent manner. Production of NO in response to ghrelin (100 nM, 10 min) in human aortic endothelial cells was blocked by pretreatment of cells with NG-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor), wortmannin [phosphatidylinositol (PI) 3-kinase inhibitor], or (D-Lys3)-GHRP-6 (selective antagonist of ghrelin receptor GHSR-1a), as well as by knockdown of GHSR-1a using small-interfering (si) RNA (but not by mitogen/extracellular signal-regulated kinase inhibitor PD-98059). Moreover, ghrelin stimulated increased phosphorylation of Akt (Ser473) and eNOS (Akt phosphorylation site Ser1179) that was inhibitable by knockdown of GHSR-1a using siRNA or by pretreatment of cells with wortmannin but not with PD-98059. Ghrelin also stimulated phosphorylation of mitogen-activated protein (MAP) kinase in BAEC. However, unlike insulin, ghrelin did not stimulate MAP kinase-dependent secretion of the vasoconstrictor endothelin-1 from BAEC. We conclude that ghrelin has novel vascular actions to acutely stimulate production of NO in endothelium using a signaling pathway that involves GHSR-1a, PI 3-kinase, Akt, and eNOS. Our findings may be relevant to developing novel therapeutic strategies to treat diabetes and related diseases characterized by reciprocal relationships between endothelial dysfunction and insulin resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Insulin receptor substrate-1 and phosphoinositide-dependent kinase-1 are required for insulin-stimulated production of nitric oxide in endothelial cells.

Vasodilator actions of insulin are mediated by signaling pathways involving phosphatidylinositol 3-kinase (PI 3-kinase) and Akt that lead to activation of endothelial nitric oxide synthase (eNOS) in endothelium. Signaling molecules immediately upstream and downstream from PI 3-kinase involved with production of NO in response to insulin have not been previously identified. In this study, we eva...

متن کامل

Editorial Commentary Exogenous Ghrelin on Nitric Oxide - Endothelin 1 Imbalance in Metabolic Syndrome

Ghrelin is a recently identified growth hormone–releasing peptide, isolated from the stomach, initially described as an endogenous ligand for growth hormone secretagogue receptors. Although essentially a gastric hormone, which is involved in regulating energy balance and exerts influence on the pituitary-gonadal axis, additional growth hormone–independent cardiovascular actions have been attrib...

متن کامل

Exogenous ghrelin on nitric oxide-endothelin 1 imbalance in metabolic syndrome: can we kill 2 birds with 1 stone?

Ghrelin is a recently identified growth hormone–releasing peptide, isolated from the stomach, initially described as an endogenous ligand for growth hormone secretagogue receptors. Although essentially a gastric hormone, which is involved in regulating energy balance and exerts influence on the pituitary-gonadal axis, additional growth hormone–independent cardiovascular actions have been attrib...

متن کامل

Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms.

Endothelial dysfunction contributes to cardiovascular diseases, including hypertension, atherosclerosis, and coronary artery disease, which are also characterized by insulin resistance. Insulin resistance is a hallmark of metabolic disorders, including type 2 diabetes mellitus and obesity, which are also characterized by endothelial dysfunction. Metabolic actions of insulin to promote glucose d...

متن کامل

APPL1 Counteracts Obesity-Induced Vascular Insulin Resistance and Endothelial Dysfunction by Modulating the Endothelial Production of Nitric Oxide and Endothelin-1 in Mice

OBJECTIVE Insulin stimulates both nitric oxide (NO)-dependent vasodilation and endothelin-1 (ET-1)-dependent vasoconstriction. However, the cellular mechanisms that control the dual vascular effects of insulin remain unclear. This study aimed to investigate the roles of the multidomain adaptor protein APPL1 in modulating vascular actions of insulin in mice and in endothelial cells. RESEARCH D...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 292 3  شماره 

صفحات  -

تاریخ انتشار 2007